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In this paper, we propose a solution of the problem of time in quantum gravity. This is done by
first defining what time actually is. We find that time is a collection of frozen moments or instants.
Time flows at the cost of creating internal or hidden coordinates. The usual rules of calculus do not
hold for time. To allow the flow of time, we have to modify the calculus. We call it the mechanics
of evolving constants (MEC) that allows constants to evolve. MEC requires modifying Newtonian
dynamics, quantum mechanics, general relativity, and quantum gravity.
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1. INTRODUCTION

One of the biggest problems in physics is to unify quantum mechanics (QM) and general relativity (GR). The
problem arises due to different notions of time in the two theories. In QM, time is a parameter that is absolute and
flows equably everywhere. Whereas in GR, time is dynamical and is a component of four-dimensional spacetime.

In quantum gravity time totally disappears [1–3]. An example is the Wheeler-DeWitt (WdW) equation (ĤΨ(q) =

0), where Ĥ is the Hamiltonian and Ψ is the wave function of the gravitational field q [4, 5]. The 0 on the right of
WdW equation means there is no time. It is possible to keep time in the theory, but then to give up space as in [6].

Physicists have different views on the nature of time. According to Julian Barbour, time is an illusion [7]. Lee
Smolin thinks that time is real [8]. As time disappears in quantum gravity, Carlo Rovelli maintains it must be possible
to treat time on the same footing as with the other physical variable but not an independent variable [2].

Another aspect of time is the directionality and the flow of time. A great deal of research is also devoted to the
study of the flow of time [9–11].

A. Caticha, in [12], [13] sets criteria for something to be called time: (a) something one might identify as an instant,
(b) a sense in which these instants can be ordered, (c) a convenient concept of duration measuring the separation
between instants.

In this paper, we define time. The expression of time (25) suggests that each instant of time is a frozen moment or
instant. It leads to the mechanics of evolving constants (MEC). It is noted that there are two types of constants. One
is called the true constants which do not change if time. The second type of constants evolve in time. The second
new ingredient is a principle or rule that we identify with the derivative of symbols or letters which works like the
product rule of derivatives that involve the coupling of true and evolving constants (equation (37) below). The rule of
symbol derivative allows us to modify any fundamental equation in physics such as Newtonian dynamics, Schrödinger
equation, Einstein’s field equation, and Wheeler-deWitt equation.

2. PROBABILISTIC NATURE OF TIME

We assume that time comes in three forms: past, present, and future. Let Ω be a sample space of the future events
that may likely happen

Ω = {E1, E2, . . . En} , (1)

where the subscript n may tend to infinity. As soon as an event say E1 happens, it is removed from the future and
added to the present. Let P (Ei) be the probability of the event Ei. For simplicity we write P (Ei) as Pi. Next, we
introduce the function g(P1, P2, . . . , Pn), which we call it the ignorance function. This function is defined by

g(P1, P2, . . . , Pn) :=

n∏
i=1

(aiPi + bi) . (2)

One can note that it is linear in each of its arguments. Here ai and bi are constants that are determined by initial
conditions.

In order to create an event say E1, one has to differentiate (2) w.r.t. P1,

g(P2, P3, . . . Pn) =
∂

∂P1

n∏
i=1

(aiPi + bi) = a1

n∏
i=2

(aiPi + bi) . (3)

By differentiating w.r.t. P1 does not take us to present fully. To obtain the present one has to differentiate w.r.t. to
all the probabilities,

g0 =

n∏
i=1

∂i

∂Pi
(aiPi + bi) =

n∏
i=1

ai . (4)

Since g0 is independent of all probabilities, we call it the sureness function.
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A. Definition of Time

The purpose of introducing the function g is to define time. Thus time is defined as

t[Pi] = −τ log g(P1, P2, . . . , Pn) = −τ
n∑

i=1

log(aiPi + bi) , (5)

where τ is a constant which sets the units of time[14].
We now find the constants ai and bi. There are two cases

1. Case 1: When t[Pi] = 0, then Pi = 1. And when t[Pi] → ∞, then Pi = 0. The first part of this case implies that

ai + bi = 1 , for all i . (6)

where we have used log 1 = 0 The second part of case 1 implies

bi = 0 for all i . (7)

Here we used the fact as x→ 0+, log x→ −∞ From the last two equations, we get ai = 1 for all i. Therefore

t+[Pi] = −τ
∑
i

logPi (8)

For later convenience, we denoted this time by t+.

2. Case 2: When t[Pi] = 0, then Pi = 0. And when t[Pi] → ∞, then Pi = 1. The first part of this case implies

bi = 1 , for all i . (9)

The second part of case 2 implies

a1 + b1 = 0 , for alli . (10)

This gives ai = −1 for all i. Therefore

t−[Pi] = −τ
∑
i

log(1− Pi) . (11)

Since time is a continuous variable, the summations in equations (8) and (11) need to be replaced by integration.

−τ
∑
i

logPi → −τ
∫
dx logP (x) ,

and

−τ
∑
i

log(1− Pi) → −τ
∫
dx log(1− P (x)) ,

because under a change of variable x→ y = y(x), the actual probabilities should not change. We must have [15]

P (x)dx = P ′(y)dy .

Therefore, expressions for equations (8) and (11) would be

t+ = −τ
∫
dxg1/2(x) log

P (x)

µ(x)
, (12)

and

t− = −τ
∫
dxg1/2(x) log

(
1− P (x)

µ(x)

)
, (13)
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where g(x) = det gab(x) is the determinant of the metric gab(x) and µ(x) is the prior probability distribution.
The two expressions for time t+ and t− need detailed analysis. First, we analyze t+. Our first observation shows

that δt+ = 0. This is so because the right hand side of equation (12) is constant as the integration is carrying over x
and P (x) only depends on x. This means that t+ is a frozen moment or an instant, it is not flowing. So how could
one obtain a later instant of time? Interestingly, it is possible. Let us first write equation (14) as

t+1 = −τ
∫
dxag

1/2(xa) log
P (x1)

µ(xa)
, (14)

Let t+2 = t+1 + δt+ be a later instant of time defined by

t+2 := −τ
∫
g1/2(x1)g

1/2(x2)dxadxb log
P (xa, xb)

µ(xa, xb)
, (15)

where P (x1, x2) is the joint probability distribution of x1 and x2. On has the interval

δt+ = t+2 − t+1 = −τ
∫
dx1dx2g

1/2(x1)g
1/2(x2) log

P (x1, x2)

µ(x1, x2)
+ τ

∫
dx1g

1/2(x1) log
P (x1)

µ(x1)
, (16)

where x1 is contained in the sample space X1. We can also call it the dimension. Whereas, x2 is an element of the
dimension X2. It means that time advances at the price of spontaneously creating dimensions. We note that x1 and
x2 do not appear in the final result. This means that X ’s are internal dimensions.
Next we show that t+1 ≤ t+2 . Since P (x1, x2) is joint probability. Using the product rule of probability one has

P (x1, x2) = P (x2|x1)P (x1) . (17)

Furthermore, probability distributions take values between 0 and 1. We have

0 ≤ P (x2|x1) ≤ 1

0 ≤ P (x2|x1)P (x1) ≤ P (x1)

0 ≤ P (x1, x2) ≤ P (x1) (18)

One has

logP (x1, x2) ≤ logP (x1) , (19)

This implies

−τ
∫
g1/2(x2)g

1/2dxadx2 log
P (x1, x2)

µ(x1, x2)
≥ −τ

∫
g1/2(x1)g

1/2(x2)dx1dx2 log
P (x1)

µ(x1)
= −τV2

∫
dx1 logP (x1) (20)

where V2 is a volume. This gives

t+2 ≥ V2t
+
1 . (21)

It will be shown later in the case of Newtonian time, Vb ≥ 1. This gives t+a ≤ t+b . This means t+ flows forward.

In a similar way, one can show t−1 ≥ t−2 . This means that t− flows backward. Here

t−1 = −τ
∫
g1/2dx1 log

(
1− P (x1)

µ(x1)

)
, (22)

and

t−2 = −τ
∫
g1/2(x1)g

1/2(x2)dx1dx2 log

(
1− P (x1, x2)

µ(x1, x2)

)
. (23)

δt− = tb − ta = −τ
∫
g1/2(xa)g

1/2(xb)dxadxb log

(
1− P (xa, xb)

µ(xa, xb

)
+ τ

∫
g1/2(xa)dxa log

(
1− P (xa)

µ(xa

)
, (24)

One can observe that δt− ≤ 0.
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3. DEFINITION OF TIME

We define an instant of time as follows

Tn =

∫ b1

a1

. . .

∫ bn

an

dx1 . . . dxnf(x1, . . . xn) n ∈ N (25)

where fn is a function of n arguments which can be chosen for a given system. One can see the right side of (25)
involves definite integrals. When fn is chosen and the integration is performed, one gets a constant. This means that
Tn is a frozen moment or an instant. Here the arguments x’s can be thought of as internal coordinates or a data set
that does not appear in the final result.

The next instant can be defined as follows

Tn+1 =

∫ b1

a1

. . .

∫ bn+1

an+1

dx1 . . . dxn+1f(x1, . . . xn+1) . n ∈ N (26)

One can note that it contains n+ 1 argument. It means that time flows at the cost of creating internal coordinates.
The interval of time can be defined as

∆Tn = Tn+1 − Tn , (27)

where Tn and Tn+1 are given by (25) and (26) respectively. The interval ∆Tn can be positive, negative, or zero
depending on the choice of fn. As such there is no restriction on fn. However, if fn has a property P , so as fn+1.
For example, if fn is Gaussian in n variables, then fn+1 is Gaussian in n+ 1 variables.
Next we consider a few functions as examples to find the instant of time and interval of time.

Example 1. Let fn =
∑n

k=1 xn be defined on the interval [0, 1]× . . . [0, 1]. Then

T1 =

∫ 1

0

dx1x1 =
x2

2

∣∣∣∣1
0

= 1/2. (28)

It is not difficult to show that

Tn =
n

2
, Tn+1 =

n+ 1

2
, and ∆Tn = 1/2 > 0 . (29)

This can be thought of as Newtonian time where time flows equably as the interval of time is constant.

Example 2. Consider

Tn =

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxn

n∏
k=1

2nxk . (30)

One obtains Tn = 1 for all n. Since Tn is constant, this means that ∆Tn = 0. This may correspond to a photon in its
rest frame where the time interval is zero.

Example 3. Suppose

Tn =

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxn

n∏
k=1

xk =
1

2n
. (31)

One has ∆Tn = −1/2n+1. Since this interval is negative, it means time flows backward in this case.

4. THE CALCULUS OF CONSTANTS

As we noted above that each instant of time is a constant, which means any function of time would also be a
constant. Furthermore, the derivative of a constant function is zero. We define the derivative of a constant function
as follows.
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Definition 1. Let G(T ) be function of T , the derivative is defined as follows

∆G(T )

∆Tn
=
G(Tn+1)−G(Tn)

Tn+1 − Tn
. (32)

One can observe that it simply involves the division of numerator over denominator. We wish to explain with an
example.

Example 4. Consider the function in example 1. Let G(T ) = T 3. Find the derivative of G.
We have Tn = n/2 and ∆Tn = 1/2. One has

∆G

∆Tn
=

((n+ 1)/2)3 − (n/2)3

1/2
=

(n+ 1)3 − n3

4
(33)

5. TRUE CONSTANTS VS EVOLVING CONSTANTS

We observe that there are two types of constants. One are those that stay constant. An example is given by example
2 and other constants are those that vary. We will denote the true constants by lowercase letters a, b, c . . . and the
evolving constants will be denoted by uppercase letters A,B,C, . . .. The lowercase letters satisfy all the properties of
ring theory or field theory such as a + b = b + a, a + 0 = 0 + a = a, a + (−a) = 0 etc. But the uppercase letters do
not have these properties. When we write numbers such as integers, the true constants would simply be written as
0, 1, 2, 3, . . .. On the other hand, evolving constants would carry indices 0fn , 1fn , 2fn , 3fn , . . .. The evolving integers
oscillate about their true values. In one example we can calculate 0fn

0fn =

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxn

n∑
k=1

(−1)k+1xk . (34)

This gives

0fn =

{
0 when n is even

1/2 when n is odd
(35)

There is some ambiguity in the oscillating numbers. One may also have

(1/2)fn =

{
0 when n is even
1/2 when n is odd

(36)

This ambiguity is understandable as oscillatory numbers are not unique. In the same way, one has 1fn = 0fn + 0fn ,
(3/2)fn = 0fn + 0fn + 0fn , 2fn = 0fn + 0fn + 0fn + 0fn etc. This also suggests that there is intrinsic oscillation or
fluctuation in time.

Next, we define a very important concept, we call it the derivative of letters or symbols which works exactly like
the product rule of derivatives. According to the product rule, one differentiates one variable and treats the second
variable constant and then treats the first variable constant and differentiates the second one. Here for clarity, we
consider three uppercase A,B, and C as follows

ABC → aBC +AbC +ABc . (37)

Here, for instance, in the first term on the right A is lowered whereas B and C remain uppercase. Sometimes we may
also use

ABC → AfnBC +ABfnC +ABCfn . (38)

The latter notation is used for two reasons. First, as we noted in the examples above different internal functions, fn,
return different results, It is acceptable as it corresponds to different solutions of a given equation. Secondly, this
notation is convenient when dealing with integers or constants of nature such as

6 = 2 · 3 → 2fn · 3 + 2 · 3fn , . (39)

We are now in the position to find commutators. Consider

AB → aB +Ab

BA → bA+Ba . (40)
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On combining one gets the desired commutators

[A,B] = [a,B] + [A, b] (41)

Note that here the various commutators do not involve any kind of operators as one would expect in QM. Therefore
each commutator should be an oscillatory zeros. Therefore

[A,B] = 0fn , [a,B] = 0fn , and [A, b] = 0fn . (42)

Note that lowercase letters commute such as [a, b] = 0, where 0 is the true zero.

6. NEWTONIAN DYNAMICS

Let Xi(Tn) be the initial state of the particle, where i = 1, 2, 3 are spatial coordinates. Let Xi(Tn+1) be the later
state. The velocity is defined as

V i(Tn) =
Xi(n+ 1)−Xi(n)

Tn+1 − Tn
. (43)

Note that equation (43) describes time evolution. The particle does not move in space. For if then the particle
position would change from Xa to X ′i. One can see that the prime coordinates nowhere appear in equation (43). If
there is no motion in space then what does (43) describe? We interpret that V i as the velocity of aging. The particle
may undergo a decaying process. In other words, the particle is weathered over time. One must also note that V i

can be positive, negative, or zero. It means that an experiment can be devised to stop aging.
Next, we define momentum as follows

P i =MV i . (44)

Note that whenever we recall an equation, it must be written in uppercase letters and then apply the derivative of
the symbols to generalize it. The momentum generalizes as follows

P i =MV i → mV i +Mvi , (45)

where m and vi are the true constant mass and true constant velocity respectively.
Similarly, recall Newton’s second law of motion and revise it

F i =MAi → mAi +Mai , (46)

where Ai and ai are evolving and true accelerations. Whereas m and M are the true and evolving masses. If one
interprets m to be the inertial mass and M is the gravitational mass and Ai is the acceleration of m and ai is the
acceleration due to gravity, one observes that m and M are not equal. This violates the weak equivalence principle
(WEP) according to which inertial and gravitational masses of a body are equal [16]. We interpret that Ai and M
are regulators. That is Ai oscillates in such a way to keep m constant. Whereas M regulates ai constant.

7. NON-RELATIVISTIC QUANTUM MECHANICS

Note that MEC does not challenge any branch of physics such as classical mechanics (CM) or quantum mechanics
(QM). Rather it revises it. Just like when one goes from CM to QM, one replaces physical quantities with their
operator counterparts. Here we use the derivative of symbols to revise any equation.

We begin with the commutator

[x̂, p̂] = iℏ , (47)

where x̂ and p̂ are the position and momentum operators, i =
√
−1, and ℏ is the Planck’s constant. One notes that

MEC does not involve operators, rather it involves uppercase and lowercase letters. Let us first fix the left side of
equation (47)

[x̂, p̂] → [X,P ] → [x, P ] + [X, p] , (48)
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Also, revise the right side of (47)

iℏ → iℏfn + ifnℏ , (49)

where ifn and ℏfn are the evolving counterparts of i and ℏ. When equations (48) and (49) are combined, one has

[x, P ] = iℏfn , or [x, P ] = ifnℏ . (50)

Similarly,

[X, p] = ifnℏ , or [X, p] = iℏfn . (51)

The uncertainty principle also needs to be revised. In QM, the uncertainty principle is given by

∆x∆p ≥ 1

2
ℏ . (52)

Now revise it

∆x∆p→ ∆X∆P → ∆X∆p+∆x∆P ≥
(
1

2

)
fn

ℏ+
1

2
ℏfn . (53)

Here ∆X = X(Tn+1)−X(Tn) is the change in the position of the particle in time. Similarly, ∆P = P (Tn+1)−P (Tn).
Interestingly, ∆x = 0 and ∆p = 0. This is because lowercase symbols do not change in time. It yields

∆X∆P = 0fn , (54)

Since 0fn oscillates, it means that there is a time when position and momentum can be measured exactly.
Next, we recall the Schrödinger equation in the following form

iℏ
∆Ψn

∆Tn
= ĤΨ, . (55)

We want to revise it by taking derivatives of symbols. There is a technical issue with the derivative of Ψ on the left.
Upon revising the difference leads to 0

0 form. To avoid we proceed as follow.

iℏ
(

1

∆Tn

)
∆Ψn = ĤΨ . (56)

Now revise it

iℏfn
(

1

∆Tn

)
fn

(∆Ψn)fn + ifnℏ
(

1

∆Tn

)
fn

(∆Ψn)fn + ifnℏfn
(

1

∆Tn

)
(∆Ψn)fn + ifnℏfn

(
1

∆Tn

)
fn

∆ψn = Hψ + hΨ

(57)
The last term on the left is zero as it involves the difference of lowercase ψ. One has

iiℏfn
(

1

∆Tn

)
fn

(∆Ψn)fn + ifnℏ
(

1

∆Tn

)
fn

(∆Ψn)fn + ifnℏfn
(

1

∆Tn

)
(∆Ψn)fn = Hψ + hΨ , (58)

where on the right, H is the classical Hamiltonian

H =
P 2

2M
+Φ . (59)

where Φ is scalar potential and h can be thought of as intrinsic Hamiltonian. One may have

h = µmσ⃗ · b⃗ , (60)

where µm is the magnetic moment of the particle, σ⃗ are Pauli matrices, and b⃗ is the magnetic field that does not vary
in time. The Pauli spin matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (61)

Thus the Schrödinger equation (58) becomes

iℏfn
(

1

∆Tn

)
fn

(∆Ψn)fn + ifnℏ
(

1

∆Tn

)
fn

(∆Ψn)fn + ifnℏfn
(

1

∆Tn

)
(∆Ψn)fn = Hψ + µmσ⃗ · b⃗Ψ , (62)

which can be thought of as Schrödinger-Pauli equation of spin-1/2 particles.
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8. SOLUTION OF SCHRÖDINGER EQUATION (SE)

In order to solve SE in QM, one must first specify the potential Φ and the boundary conditions. One may also
use various approximation methods or perturbation theory to solve it. On the other hand, in MEC, it is possible to
exactly solve SE for any potential. First, there is the space derivative that enters through the Laplacian on the right.
In MEC, only time derivatives exist. Again, in MEC, there are no such derivatives. We note the derivative introduced
in section 4 involves the division of the numerator over the denominator.

We want to solve equation (62). One can observe that on the left ifn , hfn , and (1/∆Tn)fn are oscillatory that
depends on fn. Luckily, we have freedom in choosing fn such that

ifn = 0fn , hfn = 0fn , and

(
1

∆T

)
fn

= 0fn , (63)

where the various 0fn in equation (63) may not be the same. Now use equation (63) in (62), one has

0fn + 0fn + 0fn = Hψ + µmσ⃗ · b⃗Ψ , (64)

Since 0fn depends on the choice of fn, thus a family of solutions can be obtained for various fn.

9. GENERAL RELATIVITY

According to MEC, space does exist. However, variation only happens in time but not in space. So we will only
keep time derivatives in what follows. Let us remind ourselves Einstein’s equations [16]. One has

Gµν = 8πGTµν , (65)

where G is the Newtonian gravitational constant, Gµν is Einstein tensor, and Tµν is energy-momentum tensor. Apply
MEC to (65) to revise it

Gµν = 8πGTµν → 8πfnGfn(Tµν)fn + 8fnπGfn(Tµν)fn + 8fnπfnG(Tµν)fn + 8fnπfnGfnTµν , (66)

The Einstein tensor is

Gµν = Rµν − 1

2
Rgµν , (67)

where the Ricci tensor is

Rµν = Rλ
µλν , (68)

and the Ricci scalar is

R = gµνRµν . (69)

Furthermore,

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
µσ − Γρ

νλΓ
λ
µσ , (70)

where

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) , (71)

are connection coefficients aka Christoffel symbols. In order to solve Einstein’s equation, we go in reverse order.
According to MEC, there is no variation in space, things happen in time. So we only keep time derivatives.

Γ0
00 =

1

2
g00

(
∆g00
∆T

+
∆g00
∆T

− ∆g00
∆T

)
=

1

2
g00

∆g00
∆T

(72)

Now revise it

γ000 =

(
1

2

)
fn

g00
(

1

∆T

)
∆g00 +

1

2
g00fn

(
1

∆T

)
∆g00 +

1

2
g00

(
1

∆T

)
fn

∆g00 +
1

2
g00

(
1

∆T

)
(∆g00)fn . (73)
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We can assign 0fn to each term on the right and then absorb all the 0fn in a single one. One then has

γ000 = 0fn . (74)

The same goes for Ricci scalar and tensor. It means

R00 = 0fn , and R = 0fn (75)

The Einstein tensor becomes

G00 = 0fn (76)

Finally, equation (66) yields

0fn = 0fn + 0fn + 0fn + 8πGt00 , (77)

which gives after rearranging

t00 =
0fn
8πG

. (78)

10. QUANTUM GRAVITY

In this section, we briefly discuss the Wheel-deWitt equation [4][
(qabqcd −

1

2
qacqbd)

δ

δqac

δ

δqbd
− det qR[q]

]
Ψ(q) = 0 , (79)

where qab is spatial metric with a, b = 1, 2, 3. R[q] is the Ricci scalar, and det q is the determinant of qab.
Now apply MEC, first drop the first term on the left as it involves space derivatives, we are left with

det qR[q]Ψ(q) = 0 , (80)

Now revise it by applying the letter derivative

(det q)R[q]fnΨ(q)fn + det qfn(R[q])Ψ(q)fn + det qfnR[q]fn(Ψ(q)) = 0fn , (81)

where 0fn on the right is evolving or fluctuating zero.

11. CONCLUSIONS

In this paper, we defined time. We noted that it lead to the mechanics of evolving constants (MEC). We applied
MEC, to various branches of physics from Newtonian dynamics, quantum, general relativity, and quantum gravity.
The theory of time presented here works for the discrete case. A continuous case will be discussed elsewhere.
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