
A New Method of Factoring Large Integers

Shahid Nawaz

e-mail: snafridi@gmail.com

Abstract In this paper, we reduce a large integer N to an integer N ′, which has
a smaller number of decimal digits than N . Then we �nd the greatest common
divisor (gcd) of N and N ′ to return a nontrivial factor of N .

Keywords: Factoring, Python, algorithm, running time.

1 Introduction

The branch of mathematics that deals with integers is called number theory.
Integers of particular interest are natural numbers which are given by the set
N = {1, 2, 3, . . .}. The elements of this set are mainly divided into two parts:
prime numbers and composite numbers. Prime numbers can only be divided
by 1 and itself. They are given by the set {2, 3, 5, 7, . . .}. On the other hand,
composite numbers have more than two divisors. They are given by the set
{4, 6, 8, 9, . . .}. Normally a composite number is factored into smaller numbers
N = n1n2, where the factors n1 and n2 may be again composite numbers. The
goal is to express every positive number greater than 1 in terms of prime num-
bers, which is actually the statement of the fundamental theorem of arithmetic
(FTA). According to FTA, one can write N = p1p2 . . . pn, where the prime fac-
tors pi`s are not necessarily distinct. Although FTA says that prime factors
are possible, it does not tell us how to obtain them. This is one of the hardest
problems in mathematics and computer science to factor a large number.

There are several factoring methods. The classical one is the trial division.
Let N is to be factored. Divide N by all primes starting from 2 upto

√
N . In

this way, the integer would eventually be factored. This method may work well
for small numbers, but very slow for large number. Modern methods, however,
use the fact that every odd composite number can be written as the di�erence
of two squares [1], [2]. The trick is to �nd two integers x and y such that x 6≡ y(
mod N), but x2 ≡ y2(mod N). Then gcd (x− y,N) and gcd (x+ y,N) are the
non-trivial factors of N [6].

The di�erence of square fact is used in several modern factoring methods.
The most successful methods are as follows. The continued fraction method of
Morrison and Brillhart [3], J.M. Pollard's Rho method [4], the quadratic sieve
of Pomerance [1], the elliptic curve method of Lenstra [5], and the general �eld
sieve method, see for example, [6].

This paper is based on the following conjecture. But �rst some notation in
order. The greatest common divisor of integers a and b is denoted by gcd(a, b).
The integer function bzc means the greatest integer smaller than or equal to z.

1

snafridi@gmail.com

Conjecture 1. Let N be a composite number and let m be the number of digits

in N . If m is odd, then gcd(N ′, N) returns at least one non-trivial factor, where

N ′ =
⌊

N
10bm/2c

⌋
− x, for some x in {0, 1, 2, . . . , 10bm/2c}.

The paper is organized as follows. In section 2 we introduce the background
of conjecture 1. In section 3 we provide our algorithm. In section 4 we provide
the experimental results while in section 5 we calculate the running time of our
algorithm.

2 Background of conjecture 1

Let N be an integer in base-10 given by

N = 10nan + 10n−1an−1 + + 10a1 + a0, (1)

where ai ∈ {0, 1, 2, . . . , 9} are the digits, with an 6= 0. Further

N = XY, (2)

where X and Y are the factors which are not necessarily primes. The factors
X and Y can also be expressed in base-10 as follows

X = 10kgk + 10k−1gk−1 + . . .+ 10g1 + g0, (3)

and
Y = 10lhl + 10l−1hl−1 + . . .+ 10h1 + h0. (4)

Now we write equations (3) and (4) as

X = 10j+1x+ 10jgj + . . .+ 10g1 + g0, (5)

where all the higher order terms of X are absorbed in the de�nition of x. We
further simplify equation (5)

X = 10j+1x+ r, (6)

where
r = 10jgj + . . .+ 10g1 + g0. (7)

Similarly
Y = 10j+1y + s, (8)

with
s = 10jhj + . . .+ 10h1 + h0. (9)

Use equations (6) and (8) in equation (2)

(10j+1x+ r)(10j+1y + s) = N, (10)

2

where on the left are the factors of N . After a few steps we get

10j+1y =
N − 10j+1xs− rs

10j+1x+ r
, (11)

where the factor in the denominator on the right is nothing but X. Bring it to
the left so that

10j+1yX = N − 10j+1xs− rs, (12)

We observe

N = XY ≡ rs ≡ 10jaj + . . .+ 10a1 + a0 (mod 10j+1), (13)

where base-10 expansion of r and s are given by equations (7) and (9) re-
spectively. Without loss of generality1, we can set s = 1, this implies that
hj = . . . = h1 = 0, and h0 = 1. It gives gj = aj , . . . , g0 = a0. Use this result
in equation (12) and also write N in the base-10 expansion, which is given by
equation(1), we have

10j+1yX = 10nan + . . .+ 10j+1aj+1 + 10jaj + . . .+ 10a1 + a0 − 10j+1x

−10jaj − . . .− 10a1 − a0. (14)

Upon simpli�cation we get

10j+1yX = 10nan + . . .+ 10j+1aj+1 − 10j+1x

= 10j+1

⌊
N

10j+1

⌋
− 10j+1x (15)

Or

yX =

⌊
N

10j+1

⌋
− x . (16)

Experimentally we observe that

j + 1 =
n

2
=
⌊m
2

⌋
, (17)

where m = n + 1 is the number of digits in N . To correctly obtain the factor
X, we observe that m must be an odd number and the data set x must take

values in {0, 1, 2, . . . , 10b
m
2 c}. That is

gcd

(
N,

⌊
N

10bm/2c

⌋
− x

)
= X , (18)

for some x in {0, 1, 2, . . . , 10b
m
2 c}. Thus we arrive at conjecture 1

Remark 1. Equation (18) can also be used for primality test. If X turns out
to be one for all values of x, then N is a prime number.

Remark 2. Since conjecture 1 requires N to have odd number of digits, if the
number of digits are even, then multiply N by a small prime number say, 3 or
higher so that the new N has odd number of digits, then apply conjecture 1
again.

1When s 6= 1, the data set x becomes xs and we arrive at the same �nal result i.e., equation
(18).

3

3 Factoring algorithm

Here is our algorithm that will be used to factor the integer N .

• Input: integer N

• Output: factor X

• Find the number of digits in N and call it m.

• Calculate
⌊

N
10bm/2c

⌋
• Create an array {0, 1, 2, . . . , 10bm/2c} and call it x

• Create another array call it N ′, where N ′ =
⌊

N
10bm/2c

⌋
− x

• for item in N ′:
if gcd(N,N ′) > 1 % do not return trivial factors.
return gcd(N,N ′) % return the nontrivial factor X

4 Experimental results

In this section, we include several experimental results. First, we consider in-
tegers that have odd number of decimal digits and then we will also consider
integers which have even number of digits. For all cases, the code is presented
below. Only the value of N is changing for each case. In case, if we are dealing
with the integers that have even number of digits, we might add an additional
line in the code.

Here is our code written in Python. In the �rst example, we start with a
three-digit number, say, N = 377. When we run the code, it returns X = 29
as a factor. The other factor can be obtained by dividing 377 by 29. Thus
377 = 29 · 13.

import math
N = 377
m = len(`377')
m = math.�oor(m/2)
N1 = math.�oor(N/(10**m))
import numpy as np
array1 = np.arange(0,10**m+1)
array1 = N1-array1
for item in array1:

if math.gcd(N, item)>1:
print(math.gcd(N, item))

Next, we take a �ve-digit number, say, N = 10337. In this case, when we
run the code, it returns no value which means that 10337 is a prime number.

4

Let us take a slightly di�erent number, say, N = 10339, which returns 49 as a
factor. So 10339 = 49 · 211.

Let us move on to a seven-digit number, say, N = 2737859, We get X =
433. Thus 2737859 = 433 · 6323. Let us now take a 13-digit number N =
4199954106281, We getX = 23327. So that 4199954106281 = 23327·180046903.

Unfortunately, my personal computer is not capable to test beyond 13-digit,
because the program halts.

Next we consider an integer of even number of digits, say, N = 307997. Since
307997 is a six-digit number, multiply by 7 to make it a seven-digit number.
The new number is M = 7 · 307997 = 2155979. We make some changes in our
code given above. We replace line-10 by �if math.gcd(N, item)>7:" In this case
our nontrivial factors are 1 and 7. Here is the updated code:

import math
N = 2155979
m = len(`2155979')
m = math.�oor(m/2)
N1 = math.�oor(N/(10**m))
import numpy as np
array1 = np.arange(0,10**m+1)
array1 = N1-array1
for item in array1:

if math.gcd(N, item)>7:
print(math.gcd(N, item))

We at once get X = 643 and X = 479, so that M = 2155979 = 7 · 643 · 479.
Since our original number is N = 307997. Thus N = 307997 = 479 · 643.

5 Time complexity of the algorithm

In this section we calculate the time complexity (running time) of our algorithm
developed in section 4. It should be noted that running time of an algorithm
is not the physical time of the clock but it is the number of operations by a
program to return a result.

In our case it is not di�cult to estimate the the running time as there is only
one "for loop" involved. To estimate the running time, one uses Big-O notation.
First, we quickly introduce the Big-O notation, see for example [7].

If |f(x)| ≤ Cg(x), we write f(x) = O(g(x)),

we say that f(x) is big oh of g(x). The notation tells us the growth (or shrink)
rate of a function as x→∞ or x→ 0.

Now we return to our algorithm. We notice that there is only one "for loop"
which takes values in the interval [N ′, 10bm/2c]. As far as the growth rate is
concerned we can take the interval as [0, 10bm/2c]. Thus, the running time is
O(10bm/2c). One might observe that exponential running time is slow for large

5

number, however, here m is the number of decimal digits in an integer. The
actual number to be factored is N . It is tempted to �nd a relation between m
and N . We obtain this relation in the following theorem. In what follows log z
would mean log z to the base 10.

Theorem 1. Let N be a positive integer and m be the number of digits in N ,

then √
N

10
< 10bm/2c ≤

√
10N . (19)

Proof. One can note that
m = blogNc+ 1 , (20)

or
bmc = blogN + 1c . (21)

The result is una�ected if we insert a factor of 1/2 in the above equation, i.e.,⌊m
2

⌋
=

⌊
logN + 1

2

⌋
. (22)

So that

10bm/2c = 10b
log N+1

2 c

= 10
log N+1

2 · 10−{
log N+1

2 } , (23)

where we have used
z = bzc+ {z} . (24)

where z is a generic number. Note that

0 ≤ {z} < 1 , (25)

where {z} is the decimal part of z. It means

1 ≤ 10{z} < 10 , (26)

or
1

10
< 10−{z} ≤ 1⇒ 10z

10
< 10z · 10−{z} ≤ 10z . (27)

Set

z =
logN + 1

2
. = logN1/2 +

1

2
(28)

In order to simplify equation (23), we also need to note

10logN1/2

= N1/2 . (29)

Collecting the results obtained from equations (23) through (29), we arrive at
the �nal result after a few steps√

N

10
< 10bm/2c ≤

√
10N . (30)

6

We can write inequality (30) in terms of Big-O notation, where the left
inequality implies √

N

10
= O(10bm/2c) , (31)

and the right inequality implies

10bm/2c = O(
√
10N) (32)

The two estimates (31) and (32)give us the same information which is actually
the running time of our algorithm expressed in terms of the integer N to be
factored.
Acknowledgment: I would like to thank M.A. Mubeen, A. Raza, and K. Khan
for valuable discussion on coding. My special thanks also go to F. Ghafoor for
critically reading the manuscript.

References

[1] C. Pomerance, �A Tale of Two Sieves," The Notices of Amer. Math. Soc.,
43, (1996) 1473�1485.

[2] R. Crandall and C. Pomerance, �Prime Number: A computation perspec-
tive," 2nd edition (Springer, New York, 2005)

[3] M. A. Morrison, and J. Brillhart, �Method of Factoring and the Factoriza-
tion of F7," Mathematics of Computation, 29, (1975) 183�205.

[4] J. M. Pollard, �A Monte Carlo Method for Factrization," BIT, 15, (1975)
331�334.

[5] H.W. Lenstra, J. �Factoring Integers with Elliptic Curves." Annals of Math-
ematics, 126,(1987) 649-673.

[6] M. Briggs, �An Introduction to the General Number Field Sieve." Master
thesis, (Virginia, 1998).

[7] T.M. Apostol, �Introduction to Analytic Number Theory," (Springer, New
York, 1976)

7

	Introduction
	Background of conjecture 1
	Factoring algorithm
	Experimental results
	Time complexity of the algorithm

