According to Golbach's conjecture, every even greater than 2 is the sum of two primes. Here we experimentally demonstrate that it is only true if there are infinitely many primes. Theorem: There are infinitely many primes. Proof: We prove this using Goldbach conjecture. Suppose a finite set of prime numbers P = {p1, p2, …,... Continue Reading →
د اددونو علم
په ساده ټکو کښې د اددونو علم د کزرتی اددنو (۱، ۲، ۳، ۴، ۵، ...) زدکړی ته واې. مشؤر ریاذی پوه لیپولډ کرانیکر (۱۸۲۳-۱۸۹۱) یو زل ویلی وو چه کزرتی اددونه خدائ جوړ کړی دی، دا باکی خو د انسان تخلیک دئ. یو تن به دا اوای چه د اددونو علم به ډیر اسان... Continue Reading →
The End of Integers
Euclid in 300 BC proved one of the beautiful theorems of mathematics that the number of prime numbers is infinite. The proof is based on a simple argument. Suppose $latex p_1$, $latex p_2$, $latex \ldots$, $latex p_r$ be all the primes. Let $latex P$ be the product of all the primes, then $latex P+1$ is... Continue Reading →